Gapminder Data¶
Gapminder is an organization that promotes use and understanding of statistics about social, economic, and environmental development.
Most Gapminder data is available in online spreadsheets accessed from the sourceLink on the data page.
For example if the data are at docs.google.com/spreadsheets/d/11mulzUH3_cueq-V9D5KIlo9oHE9YYZrUSeVyCin7_rM/edit#gid=176703676
then you copy the spreadsheet key (11mulzUH3_cueq-V9D5KIlo9oHE9YYZrUSeVyCin7_rM
) and GID (176703676
) and replace the values in the code cell.
Life Expectancy¶
spreadsheet_key = '11mulzUH3_cueq-V9D5KIlo9oHE9YYZrUSeVyCin7_rM'
spreadsheet_gid = '176703676'
import pandas as pd
csv_link = 'https://docs.google.com/spreadsheets/d/'+spreadsheet_key+'/export?gid='+spreadsheet_gid+'&format=csv'
df = pd.read_csv(csv_link)
df
geo | name | time | Life expectancy | |
---|---|---|---|---|
0 | afg | Afghanistan | 1800 | 28.21 |
1 | afg | Afghanistan | 1801 | 28.20 |
2 | afg | Afghanistan | 1802 | 28.19 |
3 | afg | Afghanistan | 1803 | 28.18 |
4 | afg | Afghanistan | 1804 | 28.17 |
... | ... | ... | ... | ... |
56125 | zwe | Zimbabwe | 2096 | 75.12 |
56126 | zwe | Zimbabwe | 2097 | 75.25 |
56127 | zwe | Zimbabwe | 2098 | 75.38 |
56128 | zwe | Zimbabwe | 2099 | 75.52 |
56129 | zwe | Zimbabwe | 2100 | 75.65 |
56130 rows × 4 columns
Current Populations¶
If you are interested in the current populations of countries, you can use the following code.
pop_csv_url = 'https://docs.google.com/spreadsheets/d/18Ep3s1S0cvlT1ovQG9KdipLEoQ1Ktz5LtTTQpDcWbX0/export?gid=1668956939&format=csv'
import pandas as pd
populations = pd.read_csv(pop_csv_url)
current_populations = populations[populations['time']==2019]
current_populations
geo | name | time | population | |
---|---|---|---|---|
219 | afg | Afghanistan | 2019 | 37209007 |
520 | alb | Albania | 2019 | 2938428 |
821 | dza | Algeria | 2019 | 42679018 |
1122 | and | Andorra | 2019 | 77072 |
1423 | ago | Angola | 2019 | 31787566 |
... | ... | ... | ... | ... |
58011 | vnm | Vietnam | 2019 | 97429061 |
58312 | yem | Yemen | 2019 | 29579986 |
58613 | zmb | Zambia | 2019 | 18137369 |
58914 | zwe | Zimbabwe | 2019 | 17297495 |
59215 | ssd | South Sudan | 2019 | 13263184 |
197 rows × 4 columns